New Corvette C7.R Shares Tech with 2015 Chevrolet Corvette Z06
• Co-developed with Z06, sharing chassis, engine technologies and aerodynamics strategy
• Continues legacy of Corvette Racing, which includes 95 global victories and 10 manufacturer
championships since 1999
DETROIT – Chevrolet continues to lead in the area of technology transfer with the introduction of the
Corvette C7.R race car, which was co-developed with the all-new 2015 Corvette Z06. They represent the
closest link in modern times between Corvettes built for racing and the road, sharing unprecedented
levels of engineering and components including chassis architecture, engine technologies and
aerodynamic strategies.
“When it comes to endurance racing, Corvette has been the benchmark of success for nearly 15 years,”
said Jim Campbell, U.S. vice president, Performance Vehicles and Motorsports. “A great deal of the
team’s success can be attributed to the symbiotic relationship between Corvette Racing and the
production vehicles. The 2015 Corvette Z06 and new C7.R will be more competitive on the street and
track due to successful design of the Corvette Stingray – which itself is heavily based on the C6.R race
car.”
For the 2015 season and second year in a row, Corvette Racing fields two C7.R race cars in TUDOR
United SportsCar Championship – the result of a merger of the American Le Mans Series and GRANDAM
Rolex Sports Car Series. The C7.R will compete in the GT Le Mans class in 11 races around North
America. Corvette Racing won four times in the debut season for the Corvette C7.R.
The team also will compete in June at the 24 Hours of Le Mans – a race Chevrolet and Corvette Racing
have won seven times – in the GTE Pro class.
Since the team’s competitive debut in 1999 with the Corvette C5-R, Corvette Racing has earned
unmatched success. The C5-R and C6.R led Chevrolet to 90 victories around the world and 10
manufacturer championships in the American Le Mans Series. In 2013, Corvette Racing won five races
and swept the manufacturer, team and driver championships in the GT class for a second consecutive
season.
A key part of the team’s success is the technology transfer between Corvette production cars and race
cars.
“Corvette Racing sets the gold standard for technology transfer between the track and street,” said
Tadge Juechter, Corvette chief engineer. “We are continually taking what we learn in competition, and
applying it to improve production Corvettes – which then make better race cars. As a result, the new
Corvette Z06 is the most track-capable production Corvette ever while the new C7.R is poised to be even
more competitive on the race circuit.”
Many of the architectural and aerodynamic features of the C7.R are based on equivalent components
and technologies from the 2015 Corvette Z06, including: New, aluminum frame
As before, the race car and the Z06 will share the same, production-based aluminum frame. However,
for the first time, the frames for the race car and production Z06 will be built in-house at the Corvette’s
Bowling Green, Ky., assembly plant.
By leveraging advanced manufacturing materials – such as laser welding, Flowdrill-machined fasteners
and a GM-patented aluminum spot-welding process – the production structure is significantly stronger
than its predecessor. For Corvette Racing, this equates to a race chassis for the C7.R that is 40 percent
stronger than the outgoing C6.R.
“In the first lap in the C7.R, the drivers felt the increase in chassis stiffness,” said Mark Kent, director of
Racing for Chevrolet. “The drivers instantly noticed that the C7.R handling was better over changing
surface features and rough track segments. This is important as our drivers don’t always stay on the
smooth pavement, and are constantly driving over curbing at corner apexes.”
Direct-injected engine
The addition of direct fuel injection to the Corvette Z06 will enable the technology to return to a Corvette
race car for the first time since the end of the GT1 era in 2009. It promises greater efficiency, which can
make a significant difference in long-distance endurance racing such as Daytona and Le Mans through
fewer time-consuming pit stops.
“Direct injection offers two advantages for the race team,” said Kent. “First, it offers drivers more precise
throttle control, so that even the smallest changes in the driver’s throttle position delivers a proportional
response from the engine. Second, direct injection typically improves fuel economy about 3 percent. That
could be enough to bypass one fuel stop during a 24-hour race. Given that races are often won and lost
in the pits, a 3 percent gain in fuel economy could translate to a significant advantage in track position.”
Aerodynamics
The aerodynamic strategies of the Corvette Stingray came directly from the Corvette C6.R – including
the forward-tilted radiator, functional hood and front-quarter panel vents, and rear transmission and
differential cooling intakes.
The Z06 and C7.R take that aerodynamic foundation to the next level, sharing aggressive strategies for
increased cooling and aerodynamic downforce, including similar front splitters, rocker panels, and frontand
rear-brake cooling ducts.
“We worked concurrently with the race team developing the aerodynamic packages for the Z06 and the
C7.R,” said Juechter. “We even used the same modeling software to test both cars, enabling us to share
data and wind-tunnel test results. As a result, the aerodynamics of the production Z06 produce the most
downforce of any production car GM has ever tested, and we are closing in on the aero performance of a
dedicated race car.”
There are, of course, differences between the race car and production Corvette Z06. For example, the
C7.R carries over the powertrain for the C6.R, as the GT rules limit the maximum displacement to 5.5L,
and prohibit forced induction. By comparison, the new Z06 boasts a supercharged 6.2L engine estimated
at 625 horsepower. Both engines, however, are based on the historic small block architecture.
The suspension on the C7.R is modified to accommodate wider racing tires and larger brakes, again part
of the GT regulations.
On the aerodynamic side, one major difference is the shift away from U.S. National Advisory Committee
for Aeronautics, or NACA, ducts on the C7.R. The C6.R used two NACA ducts, on top of the rear
bodywork and near the position of the rear wheels, for cooling. For the new C7.R, there are now
openings on each of the rear quarter panels, above the brake ducts, which will draw air to help cool the
race car’s transaxle and differential.
Additionally, one of the primary results of the C7.R’s aero detail is making the rear wing a moresignificant
part of the car’s aero package.
A larger radiator inlet has the added benefit of generating smoother airflow over the rear wing and making its use more efficient to the handling and stability of the
race car at high speed.