Custom Tuning
>Enter Here
Performance
Common Information
C7.Rs heading to Indy
by teamzr1
07/26/14 06:07 AM
Pricing for 2015 C7 Corvette
by teamzr1
07/21/14 07:56 AM
C7 Sales Beats Rivals
by teamzr1
07/17/14 09:54 AM
On-Star - We Love to SPAM You
by teamzr1
07/14/14 01:53 PM
C7.Rs Head to TUDOR Canada Race
by teamzr1
07/13/14 06:15 PM
New 8 speed auto trannie gearing up for builds
by teamzr1
07/10/14 01:26 PM
What played a part to save the Corvette
by teamzr1
07/04/14 02:28 PM
Team ZR-1 Store
Enter Here
What's Up
C7.Rs heading to Indy
by teamzr1
07/26/14 06:07 AM
Excessive Brake Dust on Wheels
by teamzr1
07/14/14 02:03 PM
The Reasons to do a Wheel Alignment
by teamzr1
07/14/14 02:00 PM
C7.Rs Head to TUDOR Canada Race
by teamzr1
07/13/14 06:15 PM
Turn Signal - Hazard Wiring
by teamzr1
07/12/14 06:56 PM
Tech Talk
Excessive Brake Dust on Wheels
by teamzr1
07/14/14 02:03 PM
The Reasons to do a Wheel Alignment
by teamzr1
07/14/14 02:00 PM
Turn Signal - Hazard Wiring
by teamzr1
07/12/14 06:56 PM
Forum Stats
700 Members
24 Forums
3153 Topics
5152 Posts

Max Online: 266 @ 04/09/11 07:45 AM
C7 Techie
TSB - Needs to be Replaced
by teamzr1
07/14/14 05:20 PM
Page 1 of 2 1 2 >
Topic Options
Rate This Topic
#2680 - 07/04/08 07:12 AM Positive Crankcase Ventilation
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
The Positive Crankcase Ventilation (PCV) system reduces blowby emissions from the engine.
About 20% of the total hydrocarbon (HC) emissions produced by a vehicle are blowby emissions from gases that get past the piston rings and enter the crankcase.
The higher the mileage on the engine and the greater the wear on the piston rings and cylinders, the greater the blowby into the crankcase.

Before PCV was invented, blowby vapors were simply vented to the atmosphere through a "road draft tube" that ran from a vent hole in a valve cover or valley cover down toward the ground.

In 1961, the first PCV systems appeared on California cars. The PCV system used intake vacuum to siphon blowby vapors back into the intake manifold. This allowed the HC to be re-burned and eliminated blowby vapors as a source of pollution.

The system proved to be so effective that "open" PCV systems were added to most cars nationwide in 1963. An open PCV system draws air in through a mesh filter inside the oil filler cap or a breather on a valve cover.

The flow of fresh air through the crankcase helped pull moisture out of the oil to extended oil life and reduce sludge. The only drawback to these early open PCV systems was that blowby vapors could still backup at high engine speed and loads, and escape into the atmosphere through the oil filler cap or valve cover breather.

In 1968, "closed" PCV systems were added to most cars. The breather inlet was relocated inside the air cleaner housing so if pressure backed up it would overflow into the air cleaner and be sucked down the carburetor. No vapors would escape into the atmosphere.

HOW PCV WORKS

The major component in the PCV system is the PCV valve, a simple spring-loaded valve with a sliding pintle inside.

The pintle is tapered like a bullet so it will increase or decrease airflow depending on its position inside the valve housing. The movement of the pintle up and down changes the orifice opening to regulate the volume of air passing through the PCV valve.

The PCV valve is typically located in a valve cover or the intake valley, and usually fits into a rubber grommet.
The location of the valve allows it to pull vapors from inside the engine without sucking oil from the crankcase (baffles inside the valve cover or valley cover deflect and help separate droplets of oil from the blowby vapors).

A hose connects the top of the PCV valve to a vacuum port on the throttle body, carburetor or intake manifold. This allows the vapors to be siphoned directly into the engine without gumming up the throttle body or carburetor.

Because the PCV system pulls air and blowby gases into the intake manifold, it has the same effect on the air/fuel mixture as a vacuum leak.
This is compensated for by the calibration of the carburetor or fuel injection system. Consequently, the PCV system has no net effect on fuel economy, emissions or engine performance -- provided everything is working correctly.

WARNING:
Removing or disconnecting the PCV system in an attempt to improve engine performance gains nothing, and is illegal. EPA rules prohibit tampering with any emission control device. Disabling or disconnecting the PCV system can also allow moisture to accumulate in the crankcase, which will reduce oil life and promote the formation of engine-damaging sludge.

HOW PCV FLOW CHANGES WITH ENGINE SPEED & LOAD

The flow rate of a PCV valve is calibrated for a specific engine application. For the system to function normally, therefore, the PCV valve must adjust the flow rate as operating conditions change.

When the engine is off, the spring inside the valve pushes the pintle shut to seal the crankcase and prevent the escape of any residual vapors into the atmosphere.

When the engine starts, vacuum in the intake manifold pulls on the pintle and sucks the PCV valve open. The pintle is pulled up against the spring and moves to its highest position. But the tapered shape of the pintle does not allow maximum flow in this position. Instead, it restricts flow so the engine will idle smoothly.

The same thing happens during deceleration when intake vacuum is high. The pintle is pulled all the way up to reduce flow and minimize the effect of blowby on decel emissions.

When the engine is cruising under light load and at part throttle, there is less intake vacuum and less pull on the pintle. This allows the pintle to slide down to a mid-range position and allow more airflow.

Under high load or hard acceleration conditions, intake vacuum drops even more, allowing the spring inside the PCV valve to push the pintle valve even lower to its maximum flow position.

If blowby pressure builds up faster than the PCV system can handle it, the excess pressure flows back through the breather hose to the air cleaner and is sucked back into the engine and burned.

In the event of an engine backfire, the sudden rise in pressure inside the intake manifold blows back through the PCV hose and slams the pintle shut. This prevents the flame from traveling back through PCV valve and possibly igniting fuel vapors inside the crankcase.

PCV MAINTENANCE

Because the PCV system is relatively simple and requires minimal maintenance, it is often overlooked. The common replacement interval for many PCV valves is 50,000 miles, yet many engines have never had the PCV valve replaced.

Many late model owners' manuals do not even have a recommended replacement interval listed for the PCV valve. The manual may only suggest "inspecting" the system periodically.

On many 2002 and newer vehicles with OBD II, the OBD II system monitors the PCV system and checks the flow rate once during each drive cycle. But on older OBD II and OBD I systems, the PCV system is NOT monitored.
So a problem with the PCV system on a pre-2002 vehicle probably won't turn on the MIL (malfunction indicator lamp) or set a diagnostic trouble code (DTC).

PCV valves can last a long time, but they may eventually wear out or clog -- especially if the vehicle owner neglects regular oil changes, and sludge builds up in the crankcase. The same sludge and oil varnish that gums up the engine can also plug up the PCV valve.

PCV PROBLEMS

The most common problem that afflicts PCV systems is a plugged up PCV valve. An accumulation of fuel and oil varnish deposits and/or sludge inside the valve can restrict or even block the flow of vapors through the valve.

A restricted or plugged PCV valve cannot pull moisture and blowby vapors out of the crankcase. This can cause engine-damaging sludge to form, and a backup of pressure that may force oil to leak past gaskets and seals.

The loss of airflow through the valve can also cause the air/fuel mixture to run richer than normal, increasing fuel consumption and emissions. The same thing can happen if the pintle inside the PCV valve sticks shut.

If the pintle inside the PCV valve sticks open, or the spring breaks, the PCV valve may flow too much air and lean out the idle mixture.
This may cause a rough idle, hard starting and/or lean misfire (which increases emissions and wastes fuel). The same thing can happen if the hose that connects the valve to the throttle body, carburetor or intake manifold pulls loose, cracks, or leaks.
A loose or leaky hose allows "un-metered" air to enter the engine and upset the fuel mixture, especially at idle where the idle mixture is most sensitive to vacuum leaks.

On late model vehicles with computer engine controls, the engine management system will detect any changes in the air/fuel mixture and compensate by increasing or decreasing short term and long term fuel trim (STFT and LTFT).

Small corrections cause no problems, but large corrections (more than 10 to 15 points negative or positive) will typically set a lean or rich DTC and turn on the MIL.

Problems can also occur if someone installs the wrong PCV valve for the application.
As we said earlier, the flow rate of the PCV valve is calibrated for a specific engine application. Two valves that appear to be identical on the outside (same diameter and hose fittings) may have different pintle valves and springs inside, giving them very different flow rates.
A PCV valve that flows too much air will lean the air/fuel mixture, while one that flows too little will richen the mixture and increase the risk of sludge buildup in the crankcase.

Watch out for cheap replacement PCV valves. They may not flow the same as the OEM PCV valve. Quality brand name replacement PCV valves are calibrated exactly the same as the original valves, and are designed to provide long-lasting, trouble-free performance.

PCV VALVE CHECKS

There are a number of ways to check a PCV valve:

1. Remove the valve and shake it. If it rattles, it means the pintle inside is not stuck and the valve should flow air. But there's no way to know if the spring is weak or broken, or if a buildup of varnish and deposits inside the valve is restricting flow.

2. Check for vacuum by holding your finger over the end of the valve while the engine is idling. This test tells you if vacuum is reaching the valve, but not if the valve is flowing properly. If you don't feel vacuum, it means the valve or hose is plugged and needs to be replaced.

3. Use a flow tester to check the performance of the valve. This method is the best because it tests both vacuum and air flow.

PCV SYSTEM CHECKS

The volume of air that is pulled from the crankcase by the PCV system is important because it takes a certain amount of airflow to remove the blowby vapors and moisture. But too much airflow can upset the air/fuel mixture in the engine. So to check airflow, you can do any of the following:

Pinch or block off the vacuum hose to the PCV valve with the engine idling at operating temperature. The engine idle rpm should typically drop about 50 to 80 rpm before the idle speed corrects itself (or you can disconnect the idle speed control motor so it won't affect idle speed during this test).

If there is no change in idle speed, check the PCV valve, hose and breather tube for a restriction or blockage. A greater change would indicate too much airflow through the PCV valve. Check the part number on the PCV valve to see if it is the correct one for the engine.
The wrong valve may flow too much air. If there is no part number, replace the valve with a new one (which meets OEM specifications) and test again.

Measure the amount of vacuum in the crankcase. With the engine at normal operating temperature, block off the PCV breather tube or vent to the engine (usually the hose that runs from the air cleaner housing to the valve cover on the engine). Pull out the dipstick and connect a vacuum-pressure gauge to the dipstick tube.

A typical PCV system should be pulling about 1 to 3 inches of vacuum in the crankcase at idle. If you see a significantly higher vacuum reading, the intake manifold gasket is probably leaking and pulling vacuum on the crankcase (replace the leaky intake manifold gasket).
If you see no vacuum, or find a buildup of pressure in the crankcase, the PCV system is plugged or is not pulling enough air through the crankcase to get rid of the blowby vapors.

NOTE:
If the engine has a leaky oil pan, valve cover or intake manifold gasket leak, or leaky crankshaft seals, it will not be able to develop much vacuum in the crankcase because it is pulling in outside air (which is also unfiltered and can further contaminate the oil).

To find a crankcase air leak, you can lightly pressurize (no more than 1 to 3 psi) the crankcase with shop air via the dipstick tube or oil filler cap or breather after blocking all the other vents. Do not use any more air pressure than this or you may create leaks where there were no leaks before.

Then use a spray bottle to squirt soapy water around the gasket seams and seals. If you see bubbles, you have found an air leak (replace the gasket or seal as needed).

A smoke machine also works great for finding crankcase leaks as well as vacuum leaks.
A smoke machine generates a smoke-like vapor by heating mineral oil. The mist can then fed into the intake manifold to check for intake manifold vacuum leaks, or into the crankcase to check for internal engine air leaks.
Any leaks will allow the smoke to escape and you will see the smoke on the outside of the engine.

PCV REPLACEMENT TIPS

When replacing a PCV valve, make sure the replacement valve is the same as the original. External appearances can be misleading because valves that look the same on the outside may be calibrated differently inside.
If the replacement valve does not have the same flow characteristics as the original, it may upset emissions and cause driveability problems.

The PCV hose that connects the PCV valve to the engine should also be replaced when the valve is changed. Use hose that is approved for PCV use only.

NOTE:
Can't find your PCV valve? Some engines do not have a PCV valve, but use a crankcase ventilation system with a fixed orifice oil/vapor separator. The separator functions similar to a PCV valve, but there is no movable pintle or spring inside.
The separator is simply a small box with some baffles inside and a calibrated hole that allows intake vacuum to pull the blowby vapors back into the intake manifold. Like a PCV valve, the separator can plug up with varnish and sludge, causing driveability and emissions problems.

Description: The crankcase ventilation system, often called positive crankcase ventilation (PCV), consists of a PCV valve or metered orifice (calibrated opening), its vacuum hose or line, a supply hose providing air into the crankcase, and on some applications, a breather filter to clean the air provided to the supply hose.


Purpose: The purpose of the PCV valve is to regulate the flow of crankcase fumes into the intake manifold where they can be burned. Prior to 1963, cars had no PCV and used road draft tubes that just left the hydrocarbon emissions from the crankcase out into the open air.
The PCV valve also has a secondary role as a check valve, to prevent flow back into the crankcase. This prevents potential ignition of the crankcase fumes, should the engine backfire. The PCV system is also crucial for to proper engine sealing. The system alleviates crankcase pressure, which can push out on seals and gaskets, contributing to oil leaks.

Maintenance Tips/Suggestions: Often times, the PCV system gets completely overlooked during routine maintenance. This is unfortunate, because PCV faults often mimic problems in other areas. Check your owner’s manual for PCV maintenance intervals and replace the valve as recommended.

Oil leaks are one clue of a faulty PCV system. Leaking valve cover gaskets and rear main seals are but a few examples. If the PCV system isn't operating correctly, crankcase pressure can build and force oil past gaskets and seals that would have otherwise been OK.

Drivability problems can also result from the PCV system. Hesitation and surging can occur if the wrong valve is used or there’s a leak in the PCV vacuum hose. You can perform a quick visual check of the PCV system, but it can be tough to see certain parts because of today’s crammed engine compartments. With the engine off, check the PCV hose by looking for soft spots, as well as for signs of cracking and swelling.

Also make sure that the PCV valve is properly seated in its grommet. Inspect the breather filter and the area inside the air filter housing for oil. Oil in the breather filter may be a clue to gasket leaks in the crankcase or the presence of excessive blowby gases in the crankcase.
If a basic visual check doesn’t offer any clues and you suspect a problem with the PCV system, take your car to a professional service technician.


Attachments
pcv.gif


_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2683 - 07/04/08 12:03 PM Re: Positive Crankcase Ventilation [Re: teamzr1]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
Here is scanner data as we test at idle with PCV, stock, stock modified with a smaller hole and the orifice only type.

As seen stock PCV used was leanest at idle, then reducing the hole size of stock PCV from 5/16 inch to 3/16 less rich and then with orifice type richest idle.

PCV flow then effects fuel trims.
We'll test the modified stock PCV for awhile and see if it effects less oil flow into intake, any negtive to engine seals and gaskets and what effects to air/fuel.

Stock orifice type of GM's used 2003 pickups I think the hole is too small and I think the pintel value is safer.



Attachments
pcvs.jpg

stockpcv.jpg

316PCV.jpg

orificepcvcoldidle.jpg

pcvcatch.jpg


_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2684 - 07/05/08 07:53 AM Re: Positive Crankcase Ventilation [Re: teamzr1]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
Crankcase Ventilation System Description (Without LS9)

A closed crankcase ventilation system is used in order to provide a more complete scavenging of crankcase vapors. Filtered air from the air induction system duct is supplied to the crankcase, mixed with blow-by vapors, and passes through a crankcase ventilation metering device before entering the intake manifold.
The primary component in the positive crankcase ventilation (PCV) system is the PCV flow metering device (valve or orifice). Vacuum changes within the intake manifold result in flow variations of the blow-by vapors.
If abnormal operating conditions occur, the design of the PCV system permits excessive amounts of blow-by vapors to back flow through the crankcase vent tube and into the engine induction system to be consumed during normal combustion.

This engine ventilation system design minimizes oil consumption and significantly reduces the potential for oil ingestion during vehicle limit handling maneuvers.

LS7 Engine

The LS7 engine utilizes an integral positive crankcase ventilation (PCV) system which is located in the engine valley cover beneath the intake manifold.
The engine valley cover contains composite oil separating baffles and PCV plumbing. Filtered fresh air is routed from up stream of the throttle plate to the engine oil tank where it mixes with crankcase gasses and is passed to both engine rocker arm covers.

The design of the rocker cover shields rocker arm oil spray thereby reducing the potential for oil being drawn back into the tank during backflow of the ventilation system.

Blow-by vapors are routed from the valley cover through a fixed orifice (2.5 mm) within a steel PCV tube, then through a formed nylon hose before entering the intake manifold behind the throttle body.

As shown though time GM redesigned how the PCV was designed and routed.
Uppper image would be for like a C5 where newer C6s such as the ZR1 middle image and LS7 bottom image shows quite different.


Attachments
379367.gif

1968870.gif

1968954.gif


_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2685 - 07/05/08 08:04 AM Re: Positive Crankcase Ventilation [Re: teamzr1]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
Crankcase Ventilation System Description (With LS9 and LSA)

A closed crankcase ventilation system is used in order to provide a more complete scavenging of crankcase vapors. Filtered air from the air induction system duct is supplied to the crankcase, mixed with blow-by vapors, and passes through a crankcase ventilation metering device before entering the supercharger.
The primary component in the positive crankcase ventilation (PCV) system is the PCV flow metering device (valve or orifice). Vacuum changes within the supercharger result in flow variations of the blow-by vapors.
If abnormal operating conditions occur, the design of the PCV system permits excessive amounts of blow-by vapors to back flow through the crankcase vent tube and into the engine induction system to be consumed during normal combustion.

This engine ventilation system design minimizes oil consumption and significantly reduces the potential for oil ingestion during vehicle limit handling maneuvers.

LS9 Engine (ZR1)

The LS9 engine utilizes an integral positive crankcase ventilation (PCV) system which is located in the engine valley cover beneath the intake manifold.
The engine valley cover contains composite oil separating baffles and PCV plumbing. Filtered fresh air is routed from up stream of the throttle plate to the engine oil tank where it mixes with crankcase gasses and is passed to both engine rocker arm covers.
The design of the rocker cover shields rocker arm oil spray thereby reducing the potential for oil being drawn back into the tank during backflow of the ventilation system.
Blow-by vapors are routed from the valley cover through a fixed orifice (2.5 mm) within a steel PCV tube, then through a formed nylon hose before entering the supercharger behind the throttle body.
_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2686 - 07/07/08 07:43 AM Re: Positive Crankcase Ventilation [Re: teamzr1]
tici Offline
Lives in Engine Bay
***

Registered: 12/04/03
Posts: 154
Loc: Zurich - Switzerland
Originally Posted By: teamzr1

PCV flow then effects fuel trims.
We'll test the modified stock PCV for awhile and see if it effects less oil flow into intake, any negtive to engine seals and gaskets and what effects to air/fuel.

Stock orifice type of GM's used 2003 pickups I think the hole is too small and I think the pintel value is safer.


I replaced the original PCV valve with an orifice of 2.4 mm (homemade).
I haven't noticed any difference in fuel trims nor in idle quality.
It was just necessary to reset the PCM and perform an idle relearn procedure.
I have a catchcan between orifice and intake manifold: it doesn't collect more oil than with the PCV valve.

Important: between the orifice and the intake manifold I had to install a checkvalve because the engine is supercharged.

Top
#2687 - 07/07/08 08:49 AM Re: Positive Crankcase Ventilation [Re: tici]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
2.4 mm is larger then the stock orifice type GM uses.
In my testing I went so far as to reset fuel trims for every test and it is clear by reducing air into the crankcase and venting the fumes that fuel trims were effected.
Depneding on drive style would dictate how open or closed the PCV is and then the effect of air/fumes into the intake to effect fuel trims.

Catch can is a total joke that cyberspace vendors hook people into blowing their money on.
There is no way for a static catch can to cause vapors moving in a horz flow to instantly turn into oil and drop 45 degs down to the can
I have had a catch can on for 5 years and to this day it is still dry.
To make it work there needs to be some pump pulling fumes into the can and then via filter moving what fumes there is back into the heads.

The worry is if that hole is too small and too much pressure in engine a good chance blowing our main seals or other oil leaks.
_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2688 - 07/07/08 12:24 PM Re: Positive Crankcase Ventilation [Re: teamzr1]
tici Offline
Lives in Engine Bay
***

Registered: 12/04/03
Posts: 154
Loc: Zurich - Switzerland
The air entering the crancase comes from a fitting of the throttle body: this air has been measured by the MAF. I don't understand why a different PCV valve diameter or orifice should affect fuel trims.

My catchcan is working for sure because I empty it every 2000 miles (more or less): the content is about 50 ml of oil.

This is the catchcan: the orifice is inside of the inlet fitting on the left. On the right side there is a checkvalve, that hose continues to the fitting in the intake manifold.









Top
#2689 - 07/07/08 02:14 PM Re: Positive Crankcase Ventilation [Re: tici]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
Because where is the return of PCV ?
Into the intake manifold with air and oil fumes.
That is why a PCV has a spring loaded pintle valve to control when and how open that flow path is.
The more blowby being sent into intake that air/oil will effect in the end what the front O2s report and of course the more oil fume volume the worse the charge in cylinder.
Also the smaller the hole is as in orifice type the more unburned fuel and oil fumes end up in cylinders to reburn, cause backfire and changing AFR

Here is a small filter I just stuck in to do some testing of a filtered small can in series with PCV and intake.


Attachments
catchcan.jpg


_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
#2690 - 07/07/08 03:19 PM Re: Positive Crankcase Ventilation [Re: teamzr1]
tici Offline
Lives in Engine Bay
***

Registered: 12/04/03
Posts: 154
Loc: Zurich - Switzerland
OK I didn't consider oil vapours as something that would affect the O2's, that's possible. But really, is it that much?

In my case installing an orifice didn't change the fuel trims nor the idle quality, but it may depend on the engine.

I understand the PCV valve is important in a carburated car, where the idle quality is affected by "false air" coming from the crankcase. In this case it's good to have a PCV valve that closes completely at low manifold pressures.
But with a car with an idle pintle... I think an orifice should be good enough. The amount of false air is compensated by the idle pintle (assuming the idle relearn procedure is correct).

What is the reason for GM to install an orifice in certain truck engines?

Top
#2691 - 07/07/08 03:49 PM Re: Positive Crankcase Ventilation [Re: tici]
teamzr1 Offline

Owner - Pays the bills
Lives in Engine Bay

Registered: 12/24/00
Posts: 4470
Loc: America
Truck PCV design is totally different then with a LS1 and 1 purpose of the small orifice was simply to reduce oil loss via this smog device.

It is common for LS1 engines to go through 1 quart oil or more per 1,000 miles and if racing lets say at the drags can use 1 quart in 5-6 passes.

You surely have to see that oil fumes replacing air/fuel into the cylinder would affect the quality of cylinder volume, the effects of that oil buring and causing high carbon buildup in cylinders and piston tops and the ill effect to what makeup the exhaust is as to what 02s are seeling less oxygen content.

Using a lightweight oil such as 5W30 in summer heat and high RPMs is easy to become blowby and out the PCV system.

_________________________
JR
True Custom Performance Tuning
Teamzr1.com

Top
Page 1 of 2 1 2 >



Moderator:  teamzr1 
Who's Online
1 registered (1 invisible), 12 Guests and 4 Spiders online.
Key: Admin, Global Mod, Mod
What's New
(Views)Popular Topics
Restoring our 74 coupe... 58185
Fuel consumption after top engine cleaning 25949
Team ZR-1 X-Pipe project 23768
Diagnostic Information on Diagnostic Trouble Code (DTC) P0894 and P1870 18405
Injectors offset voltage times not created equal 17374
Lawmakers introduce bill to repeal U.S. ethanol law 15128
Positive Crankcase Ventilation 15005
Power enrichment and other fuel related questions 14769
Brake fluid cause of jammed clutch debunked 13916
New GM dexos Engine Oil Specification 10778
Test & Tune
Corvette History Gallery
1776 and Corvette
Detroit Autorama
Images from Teammate Gordon
2015 Z06 Gone Public
C7R Testing at Daytona